404 research outputs found

    On relative supernova rates and nucleosynthesis roles

    Get PDF
    It is shown that the Ni-56-Fe-56 observed in SN 1987A argues that core collapse supernovae may be responsible for more that 50 percent of the iron in the galaxy. Furthermore it is argued that the time averaged rate of thermonuclear driven Type I supernovae may be at least an order of magnitude lower than the average rate of core collapse supernovae. The present low rate of Type II supernovae (below their time averaged rate of approx. 1/10 yr) is either because the past rate was much higher because many core collapse supernovae are dim like SN 1987A. However, even in this latter case they are only an order of magnitude dimmer that normal Type II's due to the contribution of Ni-56 decay to the light curve

    Chaos and Turbulent Nucleosynthesis Prior to a Supernova Explosion

    Full text link
    Three-dimensional (3D), time dependent numerical simulations, of flow of matter in stars, now have sufficient resolution to be fully turbulent. The late stages of the evolution of massive stars, leading up to core collapse to a neutron star (or black hole), and often to supernova explosion and nucleosynthesis, are strongly convective because of vigorous neutrino cooling and nuclear heating. Unlike models based on current stellar evolutionary practice, these simulations show a chaotic dynamics characteristic of highly turbulent flow. Theoretical analysis of this flow, both in the Reynolds-averaged Navier-Stokes (RANS) framework and by simple dynamic models, show an encouraging consistency with the numerical results. It may now be possible to develop physically realistic and robust procedures for convection and mixing which (unlike 3D numerical simulation) may be applied throughout the long life times of stars. In addition, a new picture of the presupernova stages is emerging which is more dynamic and interesting (i.e., predictive of new and newly observed phenomena) than our previous one.Comment: 11 pages, 2 figures, Submitted to AIP Advances: Stardust, added figures and modest rewritin

    Turbulent Mixing in Stars: Theoretical Hurdles

    Full text link
    A program is outlined, and first results described, in which fully three-dimensional, time dependent simulations of hydrodynamic turbulence are used as a basis for theoretical investigation of the physics of turbulence in stars. The inadequacy of the treatment of turbulent convection as a diffusive process is discussed. A generalization to rotation and magnetohydrodynamics is indicated, as are connection to simulations of 3D stellar atmospheres.Comment: 5 pages, 1 figure, IAU Symposium 265, 200
    corecore